RELAZIONI E FUNZIONI cosx 189 y = ____ x 1 + senx 190 y = ________ 1 senx xsenx + cosx ____________ [ ] x2 1 191 y = ( 2x + 5 + 3x )(x + 1 x ) 4x4 3x3 2x 6 _________________ [ ] x3 3x 2 y = ________ 2 (1 + x2)2 2x3 193 y = _____________ 2 (x + 1)(1 x2) (x2 + 1)(1 x) 194 y = _____________ x2 + 2 1 2 4 195 y = __ + __2 ___3 x x 3x 196 y = x 2 + ax, 197 a y = __, x2 a+b 198 y = _____ , x2 x 199 y = ______, a + bx a bx 200 y = _______2 , a + bx a R a 202 y = __2 + b, x a, b R a b 203 y = __2 + __, x x a, b R a + bx 204 y = ______, c + dx a, b, c, d R a __ [ x2 ] 2cosx _________ [ (1 senx)2 ] 1 192 a 201 y = __, x 9x 8x 3 ___________ [ (x2 + 1)3 ] x2(x4 + 3) 2 ______________ [ (x2 + 1)2(x2 1)2 ] 2 x + x4 + 5x2 + 2 ________________ [ ] (x2 + 2)2 2 (x 2) _______ [ 4 x ] a 2 __3 x] [ 2a + bx _______ x3 ] [ bc ad ________ [ (dx + c)2 ] ex + e x 205 y = _______ 2 _1_ x _1_ ( x) [2e 2e ] 3 ax 2 ______ a R [ x3 ] 2 a _____ a R [ x3 ] 2(a + b) _______ x3 ] a, b R [ a ________ a, b R xsenx + cosx 206 y = ___________ senx xcosx x2 _____________ [ (xcosx senx)2 ] senxcosx 207 y = ________ x2 2 2xcos x 2senxcosx x _____________________ [ x3 ] [ (a + bx)2 ] 2 b( a+bx 2ax) ______________ a, b R [ 2 2 (a+bx ) ] x + senxcosx 208 y = ___________ x senxcosx 2 2(2xcos x senxcosx x) _____________________ [ ] (senxcosx x)2 Per ciascuna delle seguenti funzioni scrivi l equazione della tangente al grafico della funzione nel punto P(x0 ; y0). x+1 209 y = _____ x 1 1 210 y = __2 + 3x x 1 211 y = __ + x 2 x 2x 212 y = _____ x 3 P(2 ; 3) P( 1 ; 2) 9 P 2 ; __ ( 2) P(0 ; 0) 213 y = x 3 + x 2 + x P( 1 ; 1) 2x 1 214 y = ______ x 1 + 2x 215 y = ______ 2 x 3 216 y = x + __2 x x2 + 1 217 y = ______ x2 1 x3 + 2x2 4 218 y = ___________ x2 9 x2 4x + 4 219 y = __________ x2 1 3 x + 2x2 + 3 220 y = ___________ x2 5 P 3 ; __ ( 3) 298 [y = 2x + 7] [y = 5x + 3] _3_ [y = 4 x 3] _2_ [y = 3 x] [y = 1] x __ _4_ [y = 9 + 3 ] P( 1 ; 1) [y = 1] 1 25 P __ ; ___ (2 2 ) [y = 47x + 36] P(0 ; 1) [y = 1] 1 P 1 ; __ ( 8) [27x + 32y 31 = 0] P(2 ; 0) P( 1 ; 4) [y = 0] [y = 7x + 1]